Pipetting-driven microfluidic immunohistochemistry to facilitate enhanced immunoreaction and effective use of antibodies.

نویسندگان

  • Segi Kim
  • Seyong Kwon
  • Chang Hyun Cho
  • Je-Kyun Park
چکیده

Immunohistochemistry (IHC), which has been used to detect antigens in cells of a tissue section using an immunoreaction between an antibody and an antigen, is a practical tool for identifying the type and stage of diseases in cancer diagnosis and scientific research. However, conventional IHC requires long, laborious process times and high costs. Although microfluidic IHC platforms have been developed to overcome these limitations, the application of microfluidic IHC in real-world environments is still limited due to the additional equipment needed to operate the microfluidic systems. In addition, continuous flow in a microfluidic channel leads to a waste of unbound antibodies. In this study, we demonstrate a novel and easy-to-use microfluidic IHC platform operated only using a manual pipette that is commonly available in research laboratories or hospitals. No other device such as a pump or a controller is required to operate our system. Bidirectional flows of the antibody solution in a microfluidic device are induced by repetitive manual pipetting which facilitates the enhanced antigen-antibody reaction and enables the effective use of a limited amount of antibody. When breast cancer cell and tissue sections are reacted with antibodies using our platform, pipetting for less than 2 min is sufficient to obtain immunostaining results without damaging the sample. The staining intensity by our method is similar to that of the sample stained for 1 h by a conventional batch process. We believe that this pipetting-based approach to the operation of a microfluidic system allows end users to use microfluidic IHC more conveniently and easily in real-world environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfabricated Qlisa Biosensors with an Embedded Mixing Element

Optically transduced microfluidic immunoassays have proven to be a highly sensitive and rapid method to assess the concentrations of analytes within biological samples. Although microfluidic immunoassays facilitate higher throughput and automation than standard microtiter plates, the immunoreaction within such devices remains diffusion limited unless there is a way to achieve recursive or conti...

متن کامل

Solving the "world-to-chip" interface problem with a microfluidic matrix.

We report an effective solution to the macroscopic/microfluidic interface issue and demonstrate how microfluidics can achieve impressive economies of scale in reducing the complexity of pipetting operations. Using an N x N microfluidic matrix with N = 20, we performed N2 = 400 distinct PCR reactions with only 2N + 1 = 41 pipetting steps, compared with the 3N2 = 1200 steps required with conventi...

متن کامل

Acclimation responses of gill ionocytes of red tilapia (Oreochromis mossambicus × O. niloticus) to water salinity and alkalinity

To understand the acclimation strategies of red tilapia to different environments, this study aimed to evaluate different responses of red tilapia (O. mossambicus × O. niloticus) to salinity (10-30‰), alkalinity (1-3 gL-1 NaHCO3) and salinity and alkalinity (10/1-30/3 ‰/gL-1NaHCO3) environments. Localization, type, size, and numeration of gill ionocytes were investigated on the sa...

متن کامل

Designing a dual-core photonic crystal fiber coupler by means of microfluidic infiltration

We report the results of our study on the role of microfluidic infiltration technique in improving the coupling characteristics of dual-core photonic crystal fiber (PCF) couplers. Using the finite element method (FEM), we evaluate the effective mode area, dispersion and coupling parameters of an infiltrated dual-core PCF. We use these parameters to design a compact and reconfigurable coupler by...

متن کامل

Drug Discovery Acceleration Using Digital Microfluidic Biochip Architecture and Computer-aided-design Flow

A Digital Microfluidic Biochip (DMFB) offers a promising platform for medical diagnostics, DNA sequencing, Polymerase Chain Reaction (PCR), and drug discovery and development. Conventional Drug discovery procedures require timely and costly manned experiments with a high degree of human errors with no guarantee of success. On the other hand, DMFB can be a great solution for miniaturization, int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 2017